Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Heat stress increases the use of cytosolic pyruvate for isoprene biosynthesis.

Identifieur interne : 000917 ( Main/Exploration ); précédent : 000916; suivant : 000918

Heat stress increases the use of cytosolic pyruvate for isoprene biosynthesis.

Auteurs : Ana Maria Yá Ez-Serrano [Allemagne] ; Lucas Mahlau [Allemagne] ; Lukas Fasbender [Allemagne] ; Joseph Byron [Allemagne] ; Jonathan Williams [Allemagne] ; Jürgen Kreuzwieser [Allemagne] ; Christiane Werner [Allemagne]

Source :

RBID : pubmed:31396620

Descripteurs français

English descriptors

Abstract

The increasing occurrence of heatwaves has intensified temperature stress on terrestrial vegetation. Here, we investigate how two contrasting isoprene-emitting tropical species, Ficus benjamina and Pachira aquatica, cope with heat stress and assess the role of internal plant carbon sources for isoprene biosynthesis in relation to thermotolerance. To our knowledge, this is the first study to report isoprene emissions from P. aquatica. We exposed plants to two levels of heat stress and determined the temperature response curves for isoprene and photosynthesis. To assess the use of internal C sources in isoprene biosynthesis, plants were fed with 13C position-labelled pyruvate. F. benjamina was more heat tolerant with higher constitutive isoprene emissions and stronger acclimation to higher temperatures than P. aquatica, which showed higher induced isoprene emissions at elevated temperatures. Under heat stress, both isoprene emissions and the proportion of cytosolic pyruvate allocated into isoprene synthesis increased. This represents a mechanism that P. aquatica, and to a lesser extent F. benjamina, has adopted as an immediate response to sudden increase in heat stress. However, in the long run under prolonged heat, the species with constitutive emissions (F. benjamina) was better adapted, indicating that plants that invest more carbon into protective emissions of biogenic volatile organic compounds tend to suffer less from heat stress.

DOI: 10.1093/jxb/erz353
PubMed: 31396620
PubMed Central: PMC6812709


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Heat stress increases the use of cytosolic pyruvate for isoprene biosynthesis.</title>
<author>
<name sortKey="Ya Ez Serrano, Ana Maria" sort="Ya Ez Serrano, Ana Maria" uniqKey="Ya Ez Serrano A" first="Ana Maria" last="Yá Ez-Serrano">Ana Maria Yá Ez-Serrano</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institute of Ecosystem Physiology, University Freiburg, Freiburg, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institute of Ecosystem Physiology, University Freiburg, Freiburg</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Bade-Wurtemberg</region>
<region type="district" nuts="2">District de Fribourg-en-Brisgau</region>
<settlement type="city">Fribourg-en-Brisgau</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Mahlau, Lucas" sort="Mahlau, Lucas" uniqKey="Mahlau L" first="Lucas" last="Mahlau">Lucas Mahlau</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institute of Ecosystem Physiology, University Freiburg, Freiburg, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institute of Ecosystem Physiology, University Freiburg, Freiburg</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Bade-Wurtemberg</region>
<region type="district" nuts="2">District de Fribourg-en-Brisgau</region>
<settlement type="city">Fribourg-en-Brisgau</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Fasbender, Lukas" sort="Fasbender, Lukas" uniqKey="Fasbender L" first="Lukas" last="Fasbender">Lukas Fasbender</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institute of Ecosystem Physiology, University Freiburg, Freiburg, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institute of Ecosystem Physiology, University Freiburg, Freiburg</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Bade-Wurtemberg</region>
<region type="district" nuts="2">District de Fribourg-en-Brisgau</region>
<settlement type="city">Fribourg-en-Brisgau</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Byron, Joseph" sort="Byron, Joseph" uniqKey="Byron J" first="Joseph" last="Byron">Joseph Byron</name>
<affiliation wicri:level="3">
<nlm:affiliation>Atmospheric Chemistry Department, Max-Planck Institute for Chemistry, Mainz, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Atmospheric Chemistry Department, Max-Planck Institute for Chemistry, Mainz</wicri:regionArea>
<placeName>
<region type="land" nuts="2">Rhénanie-Palatinat</region>
<settlement type="city">Mayence</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Williams, Jonathan" sort="Williams, Jonathan" uniqKey="Williams J" first="Jonathan" last="Williams">Jonathan Williams</name>
<affiliation wicri:level="3">
<nlm:affiliation>Atmospheric Chemistry Department, Max-Planck Institute for Chemistry, Mainz, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Atmospheric Chemistry Department, Max-Planck Institute for Chemistry, Mainz</wicri:regionArea>
<placeName>
<region type="land" nuts="2">Rhénanie-Palatinat</region>
<settlement type="city">Mayence</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kreuzwieser, Jurgen" sort="Kreuzwieser, Jurgen" uniqKey="Kreuzwieser J" first="Jürgen" last="Kreuzwieser">Jürgen Kreuzwieser</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institute of Ecosystem Physiology, University Freiburg, Freiburg, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institute of Ecosystem Physiology, University Freiburg, Freiburg</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Bade-Wurtemberg</region>
<region type="district" nuts="2">District de Fribourg-en-Brisgau</region>
<settlement type="city">Fribourg-en-Brisgau</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Werner, Christiane" sort="Werner, Christiane" uniqKey="Werner C" first="Christiane" last="Werner">Christiane Werner</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institute of Ecosystem Physiology, University Freiburg, Freiburg, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institute of Ecosystem Physiology, University Freiburg, Freiburg</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Bade-Wurtemberg</region>
<region type="district" nuts="2">District de Fribourg-en-Brisgau</region>
<settlement type="city">Fribourg-en-Brisgau</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31396620</idno>
<idno type="pmid">31396620</idno>
<idno type="doi">10.1093/jxb/erz353</idno>
<idno type="pmc">PMC6812709</idno>
<idno type="wicri:Area/Main/Corpus">000760</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000760</idno>
<idno type="wicri:Area/Main/Curation">000760</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000760</idno>
<idno type="wicri:Area/Main/Exploration">000760</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Heat stress increases the use of cytosolic pyruvate for isoprene biosynthesis.</title>
<author>
<name sortKey="Ya Ez Serrano, Ana Maria" sort="Ya Ez Serrano, Ana Maria" uniqKey="Ya Ez Serrano A" first="Ana Maria" last="Yá Ez-Serrano">Ana Maria Yá Ez-Serrano</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institute of Ecosystem Physiology, University Freiburg, Freiburg, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institute of Ecosystem Physiology, University Freiburg, Freiburg</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Bade-Wurtemberg</region>
<region type="district" nuts="2">District de Fribourg-en-Brisgau</region>
<settlement type="city">Fribourg-en-Brisgau</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Mahlau, Lucas" sort="Mahlau, Lucas" uniqKey="Mahlau L" first="Lucas" last="Mahlau">Lucas Mahlau</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institute of Ecosystem Physiology, University Freiburg, Freiburg, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institute of Ecosystem Physiology, University Freiburg, Freiburg</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Bade-Wurtemberg</region>
<region type="district" nuts="2">District de Fribourg-en-Brisgau</region>
<settlement type="city">Fribourg-en-Brisgau</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Fasbender, Lukas" sort="Fasbender, Lukas" uniqKey="Fasbender L" first="Lukas" last="Fasbender">Lukas Fasbender</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institute of Ecosystem Physiology, University Freiburg, Freiburg, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institute of Ecosystem Physiology, University Freiburg, Freiburg</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Bade-Wurtemberg</region>
<region type="district" nuts="2">District de Fribourg-en-Brisgau</region>
<settlement type="city">Fribourg-en-Brisgau</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Byron, Joseph" sort="Byron, Joseph" uniqKey="Byron J" first="Joseph" last="Byron">Joseph Byron</name>
<affiliation wicri:level="3">
<nlm:affiliation>Atmospheric Chemistry Department, Max-Planck Institute for Chemistry, Mainz, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Atmospheric Chemistry Department, Max-Planck Institute for Chemistry, Mainz</wicri:regionArea>
<placeName>
<region type="land" nuts="2">Rhénanie-Palatinat</region>
<settlement type="city">Mayence</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Williams, Jonathan" sort="Williams, Jonathan" uniqKey="Williams J" first="Jonathan" last="Williams">Jonathan Williams</name>
<affiliation wicri:level="3">
<nlm:affiliation>Atmospheric Chemistry Department, Max-Planck Institute for Chemistry, Mainz, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Atmospheric Chemistry Department, Max-Planck Institute for Chemistry, Mainz</wicri:regionArea>
<placeName>
<region type="land" nuts="2">Rhénanie-Palatinat</region>
<settlement type="city">Mayence</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kreuzwieser, Jurgen" sort="Kreuzwieser, Jurgen" uniqKey="Kreuzwieser J" first="Jürgen" last="Kreuzwieser">Jürgen Kreuzwieser</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institute of Ecosystem Physiology, University Freiburg, Freiburg, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institute of Ecosystem Physiology, University Freiburg, Freiburg</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Bade-Wurtemberg</region>
<region type="district" nuts="2">District de Fribourg-en-Brisgau</region>
<settlement type="city">Fribourg-en-Brisgau</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Werner, Christiane" sort="Werner, Christiane" uniqKey="Werner C" first="Christiane" last="Werner">Christiane Werner</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institute of Ecosystem Physiology, University Freiburg, Freiburg, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institute of Ecosystem Physiology, University Freiburg, Freiburg</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Bade-Wurtemberg</region>
<region type="district" nuts="2">District de Fribourg-en-Brisgau</region>
<settlement type="city">Fribourg-en-Brisgau</settlement>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of experimental botany</title>
<idno type="eISSN">1460-2431</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Butadienes (metabolism)</term>
<term>Cytosol (metabolism)</term>
<term>Heat-Shock Response (physiology)</term>
<term>Hemiterpenes (metabolism)</term>
<term>Photosynthesis (physiology)</term>
<term>Populus (metabolism)</term>
<term>Pyruvic Acid (metabolism)</term>
<term>Temperature (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acide pyruvique (métabolisme)</term>
<term>Butadiènes (métabolisme)</term>
<term>Cytosol (métabolisme)</term>
<term>Hémiterpènes (métabolisme)</term>
<term>Photosynthèse (physiologie)</term>
<term>Populus (métabolisme)</term>
<term>Réaction de choc thermique (physiologie)</term>
<term>Température (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Butadienes</term>
<term>Hemiterpenes</term>
<term>Pyruvic Acid</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Cytosol</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Acide pyruvique</term>
<term>Butadiènes</term>
<term>Cytosol</term>
<term>Hémiterpènes</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Photosynthèse</term>
<term>Réaction de choc thermique</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Heat-Shock Response</term>
<term>Photosynthesis</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Temperature</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Température</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The increasing occurrence of heatwaves has intensified temperature stress on terrestrial vegetation. Here, we investigate how two contrasting isoprene-emitting tropical species, Ficus benjamina and Pachira aquatica, cope with heat stress and assess the role of internal plant carbon sources for isoprene biosynthesis in relation to thermotolerance. To our knowledge, this is the first study to report isoprene emissions from P. aquatica. We exposed plants to two levels of heat stress and determined the temperature response curves for isoprene and photosynthesis. To assess the use of internal C sources in isoprene biosynthesis, plants were fed with 13C position-labelled pyruvate. F. benjamina was more heat tolerant with higher constitutive isoprene emissions and stronger acclimation to higher temperatures than P. aquatica, which showed higher induced isoprene emissions at elevated temperatures. Under heat stress, both isoprene emissions and the proportion of cytosolic pyruvate allocated into isoprene synthesis increased. This represents a mechanism that P. aquatica, and to a lesser extent F. benjamina, has adopted as an immediate response to sudden increase in heat stress. However, in the long run under prolonged heat, the species with constitutive emissions (F. benjamina) was better adapted, indicating that plants that invest more carbon into protective emissions of biogenic volatile organic compounds tend to suffer less from heat stress.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">31396620</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>08</Month>
<Day>17</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>08</Month>
<Day>17</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1460-2431</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>70</Volume>
<Issue>20</Issue>
<PubDate>
<Year>2019</Year>
<Month>10</Month>
<Day>24</Day>
</PubDate>
</JournalIssue>
<Title>Journal of experimental botany</Title>
<ISOAbbreviation>J Exp Bot</ISOAbbreviation>
</Journal>
<ArticleTitle>Heat stress increases the use of cytosolic pyruvate for isoprene biosynthesis.</ArticleTitle>
<Pagination>
<MedlinePgn>5827-5838</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1093/jxb/erz353</ELocationID>
<Abstract>
<AbstractText>The increasing occurrence of heatwaves has intensified temperature stress on terrestrial vegetation. Here, we investigate how two contrasting isoprene-emitting tropical species, Ficus benjamina and Pachira aquatica, cope with heat stress and assess the role of internal plant carbon sources for isoprene biosynthesis in relation to thermotolerance. To our knowledge, this is the first study to report isoprene emissions from P. aquatica. We exposed plants to two levels of heat stress and determined the temperature response curves for isoprene and photosynthesis. To assess the use of internal C sources in isoprene biosynthesis, plants were fed with 13C position-labelled pyruvate. F. benjamina was more heat tolerant with higher constitutive isoprene emissions and stronger acclimation to higher temperatures than P. aquatica, which showed higher induced isoprene emissions at elevated temperatures. Under heat stress, both isoprene emissions and the proportion of cytosolic pyruvate allocated into isoprene synthesis increased. This represents a mechanism that P. aquatica, and to a lesser extent F. benjamina, has adopted as an immediate response to sudden increase in heat stress. However, in the long run under prolonged heat, the species with constitutive emissions (F. benjamina) was better adapted, indicating that plants that invest more carbon into protective emissions of biogenic volatile organic compounds tend to suffer less from heat stress.</AbstractText>
<CopyrightInformation>© The Author(s) 2019. Published by Oxford University Press on behalf of the Society for Experimental Biology.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Yáñez-Serrano</LastName>
<ForeName>Ana Maria</ForeName>
<Initials>AM</Initials>
<AffiliationInfo>
<Affiliation>Institute of Ecosystem Physiology, University Freiburg, Freiburg, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mahlau</LastName>
<ForeName>Lucas</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Institute of Ecosystem Physiology, University Freiburg, Freiburg, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Fasbender</LastName>
<ForeName>Lukas</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Institute of Ecosystem Physiology, University Freiburg, Freiburg, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Byron</LastName>
<ForeName>Joseph</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Atmospheric Chemistry Department, Max-Planck Institute for Chemistry, Mainz, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Williams</LastName>
<ForeName>Jonathan</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Atmospheric Chemistry Department, Max-Planck Institute for Chemistry, Mainz, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kreuzwieser</LastName>
<ForeName>Jürgen</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Institute of Ecosystem Physiology, University Freiburg, Freiburg, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Werner</LastName>
<ForeName>Christiane</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Institute of Ecosystem Physiology, University Freiburg, Freiburg, Germany.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>J Exp Bot</MedlineTA>
<NlmUniqueID>9882906</NlmUniqueID>
<ISSNLinking>0022-0957</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D002070">Butadienes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D045782">Hemiterpenes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0A62964IBU</RegistryNumber>
<NameOfSubstance UI="C005059">isoprene</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>8558G7RUTR</RegistryNumber>
<NameOfSubstance UI="D019289">Pyruvic Acid</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002070" MajorTopicYN="N">Butadienes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003600" MajorTopicYN="N">Cytosol</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018869" MajorTopicYN="N">Heat-Shock Response</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045782" MajorTopicYN="N">Hemiterpenes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010788" MajorTopicYN="N">Photosynthesis</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019289" MajorTopicYN="N">Pyruvic Acid</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013696" MajorTopicYN="N">Temperature</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Ficus benjamina </Keyword>
<Keyword MajorTopicYN="Y">Pachira aquatica </Keyword>
<Keyword MajorTopicYN="Y">heat stress</Keyword>
<Keyword MajorTopicYN="Y">isoprene biosynthesis</Keyword>
<Keyword MajorTopicYN="Y">photosynthesis</Keyword>
<Keyword MajorTopicYN="Y">pyruvate</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>11</Month>
<Day>30</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>07</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>8</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>8</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>8</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31396620</ArticleId>
<ArticleId IdType="pii">5545358</ArticleId>
<ArticleId IdType="doi">10.1093/jxb/erz353</ArticleId>
<ArticleId IdType="pmc">PMC6812709</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Cell Environ. 2012 Jan;35(1):1-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21477125</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(2):e32387</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22384238</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2014 Feb;37(2):414-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23862653</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Physiol Plant Mol Biol. 2001 Jun;52:407-436</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11337404</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2010 Mar;15(3):176-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20144557</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Physiol Plant Mol Biol. 1999 Jun;50:47-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15012203</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1997 Aug;114(4):1161-1167</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12223763</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Aug;51(3):485-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17587235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2016;11(3):e1128614</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26953506</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1981 Dec;153(4):376-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24276943</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2004 Nov;9(11):529-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15501177</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2018 Dec;23(12):1081-1101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30472998</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1975 Jun;55(6):1023-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16659203</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2002 May;129(1):269-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12011357</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Physiol Plant Mol Biol. 1999 Jun;50:27-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15012202</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 May;135(1):152-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15122010</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1997 Sep 1;414(1):129-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9305746</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2015 Oct;169(2):914-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26276844</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2017 Dec;216(4):986-1001</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28967668</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2016 Sep;39(9):2027-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27287526</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2004 Jan-Feb;6(1):12-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15095130</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Braz J Biol. 2016 Feb;76(1):136-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26871751</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photosynth Res. 2009 Apr;100(1):29-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19343531</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 1996 Jan-Feb;16(1_2):25-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14871744</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1996 May 15;316 ( Pt 1):73-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8645235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fitoterapia. 2017 Mar;117:16-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28012920</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2018 Jun;41(6):1247-1250</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29508926</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1992 Mar;98(3):1175-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16668743</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2014 Mar 4;165(2):917-929</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24596328</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2006 Sep;8(5):556-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16773557</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photosynth Res. 2005 Aug;85(2):149-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16075316</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2010 Aug;15(8):462-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20554469</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bioenerg Biomembr. 2015 Oct;47(5):419-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26358423</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1994 Sep;99(3-4):260-270</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28313880</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Cent J. 2014 Feb 13;8(1):12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24524349</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2019 Aug;42(8):2448-2457</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30993708</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1997 Dec;115(4):1413-1420</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12223874</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Apr;131(4):1727-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12692331</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2008 Feb;132(2):199-208</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18251861</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2014 Aug;37(8):1727-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24471530</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2002 Jun;115(2):190-196</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12060235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2016 Jun;39(6):1251-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26477606</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2019 May;180(1):124-152</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30760638</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2008 Jan;101(1):5-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17921528</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann N Y Acad Sci. 1998 Jun 30;851:187-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9668620</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1991 Sep;97(1):463-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16668410</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2002 Oct;215(6):894-905</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12355149</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2016 Jul;171(3):1541-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27255485</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2018 Sep 25;13(9):e0204398</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30252899</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Ethnopharmacol. 2008 Sep 26;119(2):195-213</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18639620</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta Med. 1993 Jun;59(3):286</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17235980</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 1996 Jul;16(7):649-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14871703</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2018 Oct;220(2):435-446</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29974469</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Environ Monit. 2005 May;7(5):493-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15877172</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2017 Sep 25;7(1):12256</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28947762</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1997 Mar;9(3):453-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9090886</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2005 Apr;10(4):166-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15817417</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2011 Aug 24;476(7361):472-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21866161</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009 Jan;181(2):400-412</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19121035</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Mar;143(3):1096-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17344434</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 Dec;127(4):1781-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11743121</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Oct;157(2):905-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21807886</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Allemagne</li>
</country>
<region>
<li>Bade-Wurtemberg</li>
<li>District de Fribourg-en-Brisgau</li>
<li>Rhénanie-Palatinat</li>
</region>
<settlement>
<li>Fribourg-en-Brisgau</li>
<li>Mayence</li>
</settlement>
</list>
<tree>
<country name="Allemagne">
<region name="Bade-Wurtemberg">
<name sortKey="Ya Ez Serrano, Ana Maria" sort="Ya Ez Serrano, Ana Maria" uniqKey="Ya Ez Serrano A" first="Ana Maria" last="Yá Ez-Serrano">Ana Maria Yá Ez-Serrano</name>
</region>
<name sortKey="Byron, Joseph" sort="Byron, Joseph" uniqKey="Byron J" first="Joseph" last="Byron">Joseph Byron</name>
<name sortKey="Fasbender, Lukas" sort="Fasbender, Lukas" uniqKey="Fasbender L" first="Lukas" last="Fasbender">Lukas Fasbender</name>
<name sortKey="Kreuzwieser, Jurgen" sort="Kreuzwieser, Jurgen" uniqKey="Kreuzwieser J" first="Jürgen" last="Kreuzwieser">Jürgen Kreuzwieser</name>
<name sortKey="Mahlau, Lucas" sort="Mahlau, Lucas" uniqKey="Mahlau L" first="Lucas" last="Mahlau">Lucas Mahlau</name>
<name sortKey="Werner, Christiane" sort="Werner, Christiane" uniqKey="Werner C" first="Christiane" last="Werner">Christiane Werner</name>
<name sortKey="Williams, Jonathan" sort="Williams, Jonathan" uniqKey="Williams J" first="Jonathan" last="Williams">Jonathan Williams</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000917 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000917 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31396620
   |texte=   Heat stress increases the use of cytosolic pyruvate for isoprene biosynthesis.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31396620" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020